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Abstract—At present it is commonly assumed that some peculiar surface exists which boundsa viscous region
around a body in a supersonic flow. This region is identified with a laminar or turbulent Prandt] layer, the
process of transition of visible motion into heat being described by the procedures developed by Prandtl

and von Karmin for subsonic flows.

In the present work another approach is used based on the ideas of Osborne Reynolds and the so-called
resolution equation where transition of thermal motion into pulsating one is fixed which, in its turn
establishes relationship between the Nusselt and Reynolds numbers. This is a power-law relationship in
which the coefficients and power exponent may be pre-calculated based on simple considerations. This

has been done in the present work.

NOMENCLATURE
P, » st'ress ‘tensor component;
n, VISCOSIty;
P, pressure;
T, relaxation time;
l, free molecular path length;
c, thermal velocity;
E, total energy of medium;
E,  relative motion energy;
Nu, Nusselt number:
E’,  energy of mean molar motion;
Re, Reynolds number;
M Mach number;
g. sound velocity;
7 adiabatic exponent.

1. TRANSFORMATION OF VISIBLE (MOLAR)
MOTION INTO HEAT

IT 1s known from the experiment that the
momentum density of material systems does
not depend on the amount of heat. This means
that thermal motion of the system may be con-
sidered relative to that mean motion which is
determined for physically visible volumes, All

real motions of liquids and gases are always
subjected to disturbances due to thermal motions
which lead to existence of mean motion of
medium with respect to which thermal motion
may be considered relative. In this case the
fluctuation period of such thermal motion is
always short as compared to the period of
deviation from the mean motion of medium if
the latter is considered to be continuum. If this
condition were not obeyed, the equality

D = pyieyy + Pya€y; t Pys€ys + Pyl
+ P32€3; t P23€33 + P31€31 + P3s83;
dF

” (1.1)

+ P33€33 = —

would not have been realized within a high
degree of accuracy. Here p,; are components of
the stress tensor, e; are components of shear
tensor. In this equahty the right-hand part is
the rate of heat transformation into energy of
mean motion.

The reason for isolation of continuai and
thermal motions which is responsible for the
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difference in the orders of fluctuation periods of
these motions, leads to another phenomenon,
L.e. transformation of energy of continual motion
with great fluctuation period into the energy of
thermal motion with shorter periods of fluctua-
tions.

Reynolds calls such a transition of continual
motion into thermal one “transformation” in
the true sense. “All similar transformation”,
Reynolds says, “should come to some definite
modifications of true real velocities of matter,
depend on the properties of material bodies and
be explained by mechanical laws. Therefore,
direct transition of the energy of relative con-
tinual motion into energy of thermal motion
without intermediate stages indicates some
reason that changes true velocities of real
motion of matter which is exhibited in the form
of such a transformation” [1].

A question arises i.e. what should be the form
of the phenomenon which Reynolds calls the
reason of transformation? Consider the motion
of viscous gas. It is known that viscosity may be
defined by the product of pressure and relaxation
period of the statistical system

n = pt.

The time between two collisions of the system
may be defined as
I = ctg.

Here [ is the free molecular path length, and c is
thermal velocity.
Divide the first relationship by the second

I

oMo

~i
S$a

Regarding for the explicit formula for the gas
viscosity

n = pcle

we obtain
ppc _ T
Pty

Here ¢ stands for some number depending on
the nature of averagings.
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Assume that g is squared sound velocity, then
¢
79 gz = To.
Since at normal conditions the latter ratio is
very small, in this case the transition of visible
motion into heat wiil be unnoticeable.
Nevertheless, motion of the matter of con-
tinuum may be of three kinds:

{1) mean observable motion;

(2) disturbed relative, escaping observation

motion;

(3) thermal motion that can be observed.

In a bounded medium the wall may presum-
ably intensify largely intermediate motion and
even make it visible. This assertion is a priori.
However, Reynolds’ experiments with traced
jets confirm it.

Obviously, under certain conditions due to
some reason, the energy of mean molar motion
with infinite periods is directly transformed into
the energy of relative motion with finite periods,
this relative motion being characterized by
turbulent tortuous motion of the liquid. Relative
motion is maintained by continuous transition
from the energy of mean motion, despite simul-
taneous permanent decrease in the energy of
relative motion due to transformation into heat
[1]}.

Laminar flows, therefore, differ from potential
inviscid flows in that they are disturbed and
always include relative irregular flows which
transform a laminar flow into a thermal one.
Only excitation of these motions may disturb
the laminar flow and transform it into turbulent
mode.

Thus, according to the above concept the
solution of the problem on estimation of the
amount of heat obtained due to transition of
visible motion into thermal one, fully turns on
the methods of calculating the change in the
dissipative function within the path equal to the
mean wavelength of fluctuations. This calcula-
tion was first performed by Reynolds who thus
prompted the way of solving heat transfer
problems.
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2. THE REYNOLDS RESOLUTION EQUATION

If E denotes the total energy of the mediuom, E
is the energy of mean molar motion, then under
the developed flow conditions the energy of
relative motion E' is determined by the formula

E=E-E

Following Reynolds we expand the absolute
velocity components into mean molar and
fluctuational velocities

P ! -— 17 ! — ’
wo=i, +u, w, =1, +u, wy=i, U

Subscripts 1, 2, 3 show coordinate axes. Com-
ponents of fluctuational velocity satisfy con-
tinuity equation

. o~ Ou, ow, Ou,

divw =L+ 2+2

Ox, 0x, 0x,4

Assume that the axis x, is directed along the
velocity of the mean molar flow. Then

=0. (1)

w,=a+u w,=u Wy =
In this case the net force of the absolute motion

may be expressed as
E=E+E +puu;=E+E +¢

The addition of energy ¢ determines transition
of visible motion into heat, and the rate of its
time change may be presented as

& -
5 = @ grad )

It may be shown that one portion of the rate of
energy change ¢ is used to overcome the inertia
forces, the other is transformed into heat. The
latter may be expressed by the following
mathematical expression

_(.i.g- u'2_a£+ W u o
ar - Py, T PGy
+ puu. oi (2.2)
1 36x3 .

Reynolds considers the case when the velocity
i slightly changes along the stream line and the
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flow possesses axial symmetry. In this case the
component ¥, may be neglected, and equation
(2.2) takes the form

g.é..— u'u’_.‘_a..u..
dr - Pty

By including solutions of equation (2.1) into this
equality and transforming the Rayleigh dissipa-
tive function based on the same solutions, and
comparing the results, Reynolds has obtained
his outstanding equality which allows estima-
tion of transition of visible motion into heat.
This equality may serve as a basis of the theory
of heat transfer of bodies interacting with a
hydrodynamic flow.

Then Reynolds affirms that, in a wall region,
integrals of unsteady differential equations for
viscous fluid cannot exist under any conditions,
since they are not consistent with the medium
at the intial moment. This statement is grounded
by Reynolds’ paper [2]. Therefore, for the wall
region the viscous fluid equations should have
the form

gradp = nd,u.

Reynolds seeks for a peculiar solution for this
differential equation, and expresses it in terms
of the mean velocity over the thickness of the
region, i.e. in terms of #_ which is equal to

&

u, =%J’udx2.

By ‘including these solutions into his basic
equality which governs the transition of visible
motion into a thermal one, Reynolds reduces it
to the form

uo 20° @
P =Y G @3)
This is the final form of the Reynolds resolution

equation.
After introduction of the following notation

)
pu~"'— = Re,

n n
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equation (2.3) takes the form

3 m\ [*+2x5531%+50 (24)
2Re; ==
2 0951

or

B+ 1106 % + 50
i :
Assume the following relationship between

the numbers Nu, Re and period of spatial
fluctuation

(2.5)

0247 Re, =

Nu, = f(Re;) o(¥) = f(Re) ¥ (é> -

With account for

é
Re, = Reaz,

obtain

[Re
Nu, —f(ReL)lp(ReLL).
Now we make use of the Reynolds resolution
equation (2.5). It may be approximated by the
power-law function, i.e. it may be assumed that

Re, = B™I".

Substitution of this relationship into the latter
equality gives

lm+le
Nu, = f(Re )Il/(-——-—).
L L7\ Re,L

After separation of the function depending only
on Re, from this expression, we shall have
Im+ 1 Bm
NllL = ll/(ReL)X (T) .

The way the heat-transfer phenomena pro-
ceed makes such a transition possible. In almost
all of the cases the experiments aliow the number
Nu to be expressed in the form of the power-law

function of Re,. the factor and power exponent
constant. Therefore the function

‘_—(lm‘ole
L= L

may also be assumed constant. The numerical
value of this function may be found from the
analysis of the phenomena at any convenient
point. The stagnation point of the incident flow
may be the case.

3. HEAT FLUX FROM A SUPERSONIC GAS
FLOW TO A SOLID

Unlike a subsonic flow, a supersonic one
around a solid is divided into three regions. The
first region corresponds to the state of fluid from
the infinite distance to the shock wave: the second,
to the state of fluid from the shock wave to the
surface around the solid in the flow with dis-
continuous change of the density, and at last
the third one corresponds to the hvdrodynamic
state of the fluid between this surface and that
of the solid body. The picture quite agrees with
observations. We think the transition occurs in
the third region. This does not contradict the
generally accepted point of view.

The third region is acknowledged by all
investigators and up to now is identified with the
Prandtl-Karman boundary layer. As the
majority of investigators think, this region, as
well as in a subsonic flow, is divided into laminar
and turbulent ones, as far as the flow pattern is
considered.

We do not hold to the view of the majority.

Consider the region of tramsition of visible
motion into heat for a supersonic flow around
solids to be bounded from one side with the
solid surface, and from the other, with the surface
not far from that of the solid body where the
velocity undergoes discontinuous change. Then
assume that all the values which determinc the
state of the medium in the region of transition of
visible motion into heat. depend on the co-
ordinates and time only through the variable
¢ = V + gt. Thus we ascertain that transition of
visible motion into heat proceeds in the foim of
a front. It may be stated a priori that such a
process is possible, but this means that it is sure
to exist. This alternative may be theoreticaily
resolved only by way of experiments and we shall
appeal it to.
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Earlier the formula

dT
gre = pglu, — u) — k&

was established. The right-hand part of the
equation is evidently that energy heat flux which
is absorbed by the solid body.

This heat flux is known to be determined in
terms of the heat-transfer coefficient as

T = T,).
With regard for the above, have
T — Ty) = gt. . (3.1)
The product gr is related to the conditions of
flow behaviour and does not depend on tem-
perature. Differentiation of the relationship (3.1)
with respect to temperature yields

o= g'c——q2 (3.2)

dT’
Thus, a simple relationship is established be-
tween the heat-transfer coefficient and the
Rayleigh function. This is very significant since
Reynolds has developed a method of calculating
the energy of transition of visible motion into
heat using the Rayleigh function. Now we shall
try to make use of the method. g, is the phase
velocity of fluctuations, 2 is the wave-length of
fluctuations. Then we have

i=g,r

But Reynolds expressed his resolution equation
through the variable /

206 40

l=——=—,

- 7 (3.3)
Account should be taken of the fact that the
spatial period w is equal to 2n/4. From com-
parison of the relationships given, it follows that

TR

Using the latter relationship we exclude the
period t from formula (3.2) and arrive at

2133

_ 490 42
= glar

The value & is the measure of the thickness of the
zone where visible motion is transformed into
heat. Introduction of the time of zone formation
1 makes evident the identity

(3.4)

o/g =1

Exclusion of the value é from formula (3.4)
yields

(3.5)

Express this relationship in terms of the numbers
Nu and Re.

The line obtained when the solid body is
sectioned by a plane through the abscissa is
assumed to be the measure of the length. The
point of flow incidence is considered to be a
reference point of the line and its end is the point
where the local heat-transfer coefficient is sought.
Besides, we use the known Maxwell relationship

k = fen.

The mean value of the shear flow velocity in the
region of transition of visible motion into heat
is W,

Now we shall divide equality (3.5) by the
Maxwell relationship and multiply it by the
line length L. We arrive at

oL WpL

Nu, = - : Re, = ——'n—
2 ¢
Nu, = R 4 do =

eLf———-gqurla?-":;

But the product 7. d® is modification of the heat
amount due to transition of visible motion into
heat. The product ¢ pdT expresses the same.
Their ratio should therefore, be considered
equal to unity. This condition allows the last
formula to be written as follows

492

NllL = ReLfg—-Wj. (36)
u 't
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Now it is of the form which allows its trans-
formation wusing the Reynolds resolution
equation.

The Reynolds resolution equation is of the
form

* +11061% + 50
l )

Within any range of two variables Re; and I, may
be approximated by the power-law formula that

0247 Re, = (3.7)

Re; = B™I",

where B™ is a constant. Also, the identity

L
ReL = Reé‘g

holds. With regard for these two relationships
formula (3.6) may be written as follows

4Bg? (L)‘”""
Nu;, = Re{" " V™ ——| =
L L fguw{ 5

or
Nu, = ARE{"=tm

4Bg? (L)‘”""
A= )
fa W \6

The way of calculation of the constants m and
A would be the way of theoretical solution of
heat-transfer problems. It appears possible to
find it in many particular cases.

If formulae (3.7) hold for any points of surface,
they will also hold at the point of flow incidence.
Thus, in the cases of clear physical picture at the
point of flow incidence, the possibility of
calculating heat losses for any point of the heat
transfer surface arises simultaneously.

The stagnation point of the incident flow
cannot be considered a mathematical one.
Therefore, at this point, the length L has some
limit value L,. The thickness of the region of
transition of visible motion into heat also has
some limited value 4,

As to the three values g, g, and W, the follow-
ing considerations may be presented. At the

(3.8)

A.S. PREDVODITELEV

stagnation point the front velocity and the phase
velocity of fluctuations coincide and are equal
to the speed of sound. Thus we affirm that both
phenomena are due to the same reason, ie.
fluid compression.

Transition of visible motion into heat at the
stagnation point of the incident supersonic flow
should occur at the Mach number equal to unity,
if the flow velocity is related to the sound speed
of the fluid which thermodynamic state corres-
ponds to its state at the stagnation point. This
means that all three values are equal.

All this allows the formula for heat transfer in
a supersonic flow to be written in the form

4B (L,\'™
Nu, = —|=2 . Rem~Vim .
u, 7 ( 50) Re] (3.9)

The Reynolds resolution equation (3.7) also
allows calculation of the ratio L /3, for the
process at the stagnation point of the incident
flow.

At the stagnation point the value |/ shouid
have the minimum vaiue which can be neglected
as compared to figure 50. Then we shall have

0-247 Re, = -STO
‘When defining Re and taking account of
4
'10

(3.10)

| =

we have
0247. pW3, _ 50 4,
n 45,
But viscosity is described by the relationship
n = 3pcs.

where ¢ is thermal velocity, s is free path length.
Now the Reynolds resolution equation may
be written as

0741 W3, 25 Ay
=35

c3 2
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Or, when substituting the thermal velocity by
the speed of sound
0-741./y 6, 25 A,

J3 s 276,

Hence it follows
X -1.
?

6 25
One molecule, on the average, occupies the

— = — (3.11)
volume

54,

4 s ns’

3 8 6

The layer with transformation of visible
energy into heat is of thickness J,. Hence, the
minimum volume of this layer including one
molecule will be §,s2. This volume should be
equivalent to the half volume per one molecule
in free space. Thus.

(3.12)

n
6052 = ﬁ Sz.

Using this relationship the free path length can
easily be excluded from formula (3.12)

6, 25x12 \/(3)
x [1=]).
14

N - T
Ao 1-482n

In order to calculate the unknown ratio, the
relationship between the minimum value of L,
and the wavelength should be known.

If the maximum value of the fluctuation
amplitude coincides with the geometric point
of the stagnation region, then, obviously, the
minimum value of the magnitude L should be
equal to one fourth of the wavelength. This
condition allows final expression for the ratio
L,y/d, in the form

L, = x00148 [/y\ ¥
2= () 0w )

With polyatomic gases, for which y may be
assumed equal to 1-44, we shall have

Lo - 00027.
60
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Thus for polyatomic gases heat-transfer
formula (3.9) may be rewritten as

4B

7 (0-0027)/™ Re{"™~ V™= B'Rem~ 1im,

Nu, =

(3.13)

The proposed method of calculation of the
heat transfer coefficient using the Reynolds
resolution equation would be rather complete if
the constants m and B might be calculated by
the main experimental data. Such a calculation
appears to be possible. This will be done when
considering particular examples.

4. SOME EXAMPLES OF CALCULATING HEAT
TRANSFER OF SOLIDS IN A GAS-DYNAMIC
FLOW

To solve any heat-transfer problem for a gas-
dynamic flow the approximation region of the
power-law function of the Reynolds resolution
equation should be defined. In other words, the
values of m and B should be estimated by the
main parameters for any particular case.

The Mach number and thermodynamic state
of fluid in the premix chamber of a gas-dynamic
nozzle may be assumed to be the main parameters
of the gas-dynamic flow. Also, the nature of the
fluid should be taken into account.

We shall write the Mach number for the
stagnation point. It is this number that charac-
terizes the gas-dynamic flow. The sound speed
of the fluid at the initial state is g. Then

mM=Z
9s
By multiplying the nominator and denominator
by the time of formation of the region of transition
of visible motion into heat obtain
M=
g.r
Since for the stagnation point

W=W =g,
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the latter identity may be rewritten as

wal
g.r
Now we shall multiply the nominator and
denominator of the identity by the fluctuation
wavelength and obtain
M= Soto. .
9, %
According to Reynolds, the ratio 46,/4, is equal
to the limit number. Therefore

aM = I,

g.t

Substitute in this expression the sound speed by
thermal velocity using formula

o= ()

where c,, is the thermal velocity of a molecule
at the initial state. Then for the Mach number

obtain
o= J2) L,
7/ Cyt

It is seen from the relationship that in order to
estimate the lower boundary of the value !
variation, the ratio

“.1)

’
Cp?

A’O

should be known. This ratio can be estimated
when Reynolds’ ideas are successively used.

According to Reynolds, thermal motion of
molecules is relative as compared to the macro-
scopic motion of medium. The fluctuational
motion which through the macroscopic motion
of medium is transformed into heat is, in its
turn, relative to the mean macroscopic motion.
This statement gives us a right to consider that
the mean kinetic energy of the molecules of a
medium at the final state is equal to the sum of
the kinetic energy of molecules at the initial

A.S. PREDVODITELEV

state of the medium and the kinetic energy of the
fluctuational motion transformed into heat.
Mathematically this can be written as

PuCiq + Pyt® = pc’.
Denoting the final to initial density ratio by j.
obtain

i + u? = Bt (4.2)

This expression is equivalent to the vector
equality

€y + u = (Pl

Thus, any translational thermal motion of
molecules transits into another translational
motion along the vector ¢ due to fluctuations.
Multiply equation (4.2) by the squared time
of formation of the region of visible motion
transition into heat at the stagnation point

(cy ) + (ut)? = Blet).

Substitution of ¢ by the sound speed g yields

(¢, T) + (ur)? = BL/G—) gt’]b = ?53. (4.3)

For the time of formation of the transition zone a
fluctuating particle should cover the distance
equal to the wavelength and return to the initial
state. Under this condition only, fluctuational
motion is reasonable to be considered relative
with respect to the mean motion which is
relative to the thermal one. This means that the
product ut’ is equal to the double fluctuation
wavelength, i.e.

ut’ = 24,
At this condition equality (4.3) may be written as
(£>2+4—}£éé—3£[2

A Ty A2 T 16y

0

Hence follows

Ao 2 _ 16y
c,¥/) (BB — 64y)°

When squared and including the expression
obtained, equality (4.1) takes the form

(4.4)
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e
T 3812 — 64y

=8 (8 =

Thus, the formula derived allows estimation of
the lower boundary of the Reynolds variabie
using main parameters M, § and 7.

At the Power Engineering Institute O. N.
Kastelin and L. N. Bronsky [3] have studied
heat transfer in a supersonic flow of spherical and
elliptical bodies. Their experiments may be used
to verify the above considerations.

These authors used spherical bodies 1-5 and
2 cm i.d. Elliptical bodies were of two types. One
group had a large half-axle of 1-5 and 2 cm and
a smaller half-axle of 0-75 and 1 cm. The other
group had a large half-axle of 0-75 and 1 cm and
a smaller one of 0-375 and 0-5 cm.

The first group of elliptical bodies was
arranged with their large half-axle against the
incident flow. The second group had their
smaller half-axle against the incident flow. The
tests have been carried out on a gas-dynamic
installation of continuous operation at M =
2-77, 240 and 1-88. The temperature behind the
shock wave was 274, 270 and 261°C.

From the experiments O. N. Kastelin and
L. N. Bronsky have found the relationship for
all of the above bodies

Nu, = 0-8%.

M2
Then

(4.5)

Here the numbers Nu, and Re, were defined in
the same way as in the previous section. The
factor in the Reynolds number was estimated
as the mean of some observations. It ranged from
07 t0 09.

If the Mach numbers presented by Kastelin
and Bronsky are used, then in accordance with
(4.5) we may tabulate the lowest values of the
variable / in the Reynolds resolution equation.
For the table calculations the gas was assumed
polyatomic, and, therefore, y equal to 1-44 and
B equal to unity.
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M I
277 6-00
2:40 613
1-88 6-55

The table shows that the minimum value of
the variable is about 6. The value of | increases
with the distance from the stagnation point

15ooF
&
€
N~ i000F
<
o
o)

500

s J
o 5 10
{
FiG. 1. Graphic presentation of Reynolds resolution

equation.

(Fig. 1). Approximation of the resolution equa-
tion in this region by the power-law function
yields

Re, = 42P%.

The general form of the approximating function
i<

Re = B™™.

Comparison of these two formulae gives the
following values of B and m

m=2; B? = 42; B = 6'50.
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The data obtained allow formula (3.13) to be
written for the given case as

_ 4 x 650

7 0-0027% . Re®®.

Nu (4.6)

From the theoretical predictions by Eucken for
polyatomic gases, the Maxwell factor is 1-8.
Substitution of this value for f in formula (4.6)
yields

Nu = 0-75 Re®* 4.7
Thus, the theoretical formula for heat transfer
of solid s in a gas-dynamic flow is fully confirmed
by experimental data.

The question arises how far it may be extra-
polated with increasing Mach numbers.

For very large Mach numbers formula (4.5)
can approximately be written as

)

But for the density ratio 8 according to the
Clapeyron equation the expression
g2 _ P
Po PoT
is valid.
In accordance with (4.2) pressures should be
assumed equal Then we have

TO
B=-2.
Let the temperature corresponding to the initial

state of the substance be equal to 300°K, and
that to the final state, to 9000°K. Then

9000 30°

If for polyatomic gas y = 1-44, then in the
resolution equation

I =8 x 12 x (/10) = 96 x 316 = 30-4.
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With these values of | the resolution equation is
P+ 11061
Res="Gaa7
For the range of | from 30 to 40 the above
quality may be approximated by the formuia
Re; = 135 2.
Hence we have
B = (\/135) = 11'6.
The heat-transfer formula, therefore, will be of
the form
4 x 116 x 005
= R

m=2

Nu, e} = 135 Re®>.
It is seen from the formula that at M corres-
ponding to stagnation temperature of 3000°K
the heat-transfer coefficient increases by about
two times as compared to the experimental data
of O. N. Kastelin and L. N. Bronsky.

O. N. Kastelin and L. N. Bronksy have also
investigated the heat transfer of a plate normal
to the incoming flow direction. They have
obtained the formula

Nu, = 0-31 Re?'%°. (4.8)

It may be shown, however, that the latter
formula corresponds to the one obtained earlier.

In fact, assume that in the Reynolds resolution
equation the lower boundary of the variable ! in
the earlier experiments corresponds to that in
the latest experiments. Then the difference
between formulae (4.8) and (4.7) should be
explained only by the method of approximation.

When deriving formula (4.7) the Reynolds
resolution equation was approximated by the
power-law function

B™™ = 42 [%;

The same formula may also be approximated
by the power-law function of the form

m = 2-S.

m=2  B=(/42) =65

BYS S = 4207,

In this case the ratio (m — 1)/m will be equal to
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0-6, which almost corresponds to the power
exponent of the second formula by O. N.
Kastelin and L. N. Bronsky. We have to cal-
culate only the constant B,. Assume, as before,
that the lower boundary of the value ! is 6. Then
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As we see, the formula is found which is similar
to (4.7). Therefore, there are no reasons to think
that heat transfer in the latest experiments of
O. N. Kastelin and L. N. Bronsky differs from
that in their earlier experiments.

we shall have

B*S = 6‘% =171
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TRANSFERT DE CHALEUR DANS UN ECOULEMENT SUPERSONIQUE

Résumé— On suppose actuellement qu’il existe une surface particuliére qui délimite une région visqueuse
autour d'un corps dans un écoulement supersonique. Cette région est identifiée & une couche laminaire ou
turbulente de Prandtl, le processus de transition du mouvement visible vers la chaleur étant décrit par les
méthodes développées par Prandtl et Karman pour des écoulements subsoniques.

Dans la présente étude, on a utilisé une autre approche basée sur les idées d’Osborne Reynolds et cette
équation de résolution portant son nom ot est fixée la transition d’'un mouvement thermique 4 un autre
mouvement pulsatoire qui, & son tour, établit une relation entre les nombres de Nusselt et Reynolds.
C'est une relation en loi de puissance dans laquelle les coefficients et les exposants de puissance peuvent

étre précaiculés & partir de considérations simples, comme cela est montré dans cet article.

WARMEUBERGANG IN UBERSCHALLSTROMUNGEN

Zusammenfassmng—Gegenwirtig wird allgemein angenommen, dass eine besondere Oberflache existiert,
die eine Zihigkeitszone um einen Korper in einer rschallstromung begrenzt. Diese Zahigkeitszone
wird als laminare oder turbulente Prandtl’sche Grenzschicht identifiziert, wobei der Ubergangsprozess
zwischen Bewegung und Wiirme durch das Verfahren beschrieben wird, das Prandt] und Kérmén fiir
Unterschallstrdmungen entwickelt haben.

In der vorliegenden Arbeit wird eine andere Naherung benutsi. Ihr liegen die Ideen von Osborne
Reynolds und die sogennante Losungsgleichung zu Grunde, in der ein bestimmter Ubergang zwischen
Lingsbewegung und pulsierender Bewegung festgelegt ist. Daraus ergibt sich cin Zusammenhang zwischen
Nusselt-Zahl und Reynoids-Zahl und zwar in Form eines Potenzgesetzes, in dem die Koeffizienten und
Exponenten aufgrund einfacher Uberlegungen vorausberechnet werden kénnen. Dies wurde in der

vorliegenden Arbeit durchgefiihrt.



2140

A. S. PREDVODITELEYV

O TEIIOOBMEHE B CBEPX3BYROBOM [NOTOKE

Andoranua-—B Hacroslllee BpeMA OGMENPUHATO NPENHOJOHEHHE O CYIIECTBOBAHUM 0COOOM
NMOBEPXHOCTH, OTPAaHHYUBAaKUIE 00JaCTe BA3KOrO TeUYEHIA OKOJO Teja, ofTeKaeMoro
CBEPX3BYKOBBIM MOTOKOM. STy 00JacTh OTOMIECTBIAIT C JAMHHADHBIM ILTH TYPOYICHTHEM
cioem [lpaHaTaa u mpouecc NpeBPAalEHNHA BUIMMOrO IBUMEHNA B TEILIO OMMCHIBAIOT TEMIl
npMeMaMu, KoTopsle paspaforane!l [Ipanariaem u HapMaHoM 1A J03BYKOBBIX TedeHMIt.

B wacroAmeii pabore ucnonb3yercA Jpyroit npuem, ocHOBaHHBIT Ha ngeax OcdopHa
PeilHombaca M ero Tak Ha3LBAaeMOM paspellaiollleM YpaBHeHuM, B KoTopoM QmMEKcHpyercs
nepexof TEIIOBHX ZBMMKERU! B NMyJhCAUMOHHBIE, 4TO B CBOIO OHepelb JAeT CBA3b MEHIY
wpurepuamn Hyccenpra u PeftHonnaca. CBA3b HTA umeeT CTeleHHON BUI, IpHYeM BXOAAUIMeE
B Hee KOI(Q@UMIMEHT If MOKa3aTedb CTEMEHM MOMKHO INPEeIBRIYMCIMTE MCXOIA U3 JOBOJIBHO

APOCTHIX coOGpaKeHHHt, 4TO u NPoZenaHo B JaHHO# paboTe.



