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Aha&act-At present it is commonly assumed that some peculiar surface exists which bounds a viscous region 
around a body in a supersonic flow. This region is identified with a laminar or turbulent Prandtl layer, the 
process of transition of visible motion into heat being described by the procedures developed by Prandtl 
and von Kdrman for subsonic flows. 

In the present work another approach is used based on the ideas of Osborne Reynolds and the so-called 
resolution equation where transition of thermal motion into pulsating one is fixed which, in its turn 
establishes relationship betwem the Nusselt and Reynolds numbers. This is a power-law relationship in 
which the coefficients and power exponent may be pticulated based on simple considerations. This 

has been done in the present work. 

NOMENCLATURE 

stress tensor component; 
viscosity; 
pressure; 
relaxation time; 
free molecular path length; 
thermal velocity; 
total energy of medium; 
relative motion energy; 
Nusselt number; 
energy of mean molar motion; 
Reynolds number; 
Mach number; 
sound velocity; 
adiabatic exponent. 

1. TRANSFORMAnON OF VISIBLE (MOLAR) 
MOTION INTO HEAT 

IT IS known from the experiment that the 
momentum density of material systems does 
not depend on the amount of heat. This means 
that thermal motion of the system may be con- 
sidered relative to that mean motion which is 
determined for physically visible volumes. All 

real motions of liquids and gases are always 
subjected to disturbances due to thermal motions 
which lead to existence of mean motion of 
medium with respect to which thermal motion 
may be considered relative. In this case the 
fluctuation period of such thermal motion is 
always short as compared to the period of 
deviation from the mean motion of medium if 
the latter is considered to be continuum. If this 
condition were not obeyed, the equality 

@ = plleil + Pdl2 + Pl3%3 + Jhezl 

+ pZZe22 + P23e23 + P31e31 + p3Ze32 

dF 
+ P35e33 = - PX (1.1) 

would not have been realized within a high 
degree of accuracy. Here pij are components of 
the stress tensor, eij are components of shear 
tensor. In this equality the right-hand part is 
the rate of heat transformation into energy of 
mean motion. 

The reason for isolation of continual and 
thermal motions which is responsible for the 
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difference in the orders of fluctuation periods of 
these motions, leads to another phenomenon, 
i.e. transformation of energy of continual motion 
with great fluctuation period into the energy of 
thermal motion with shorter periods of fluctua- 
tions. 

Reynolds calls such a transition of continual 
motion into thermal one “transformation” in 
the true sense. “All similar transformation”, 
Reynolds says, “should come to some definite 
modifications of true real velocities of matter, 
depend on the properties of material bodies and 
be explained by mechanical laws. Therefore, 
direct transition of the energy of relative con- 
tinual motion into energy of thermal motion 
without intermediate stages indicates some 
reason that changes true velocities of real 
motion of matter which is exhibited in the form 
of such a transformation” [ 11. 

A question arises i.e. what should be the form 
of the phenomenon which Reynolds calls the 
reason of transformation? Consider the motion 
of viscous gas. It is known that viscosity may be 
defmed by the product of pressure and relaxation 
period of the statistical system 

The time between two collisions of the system 
may be defined as 

I= c-co. 

Here I is the free molecular path length, and c is 
thermal velocity. 

Divide the first relationship by the second 

II PT -=-- 
1 c To’ 

Regarding for the explicit formula for the gas 
viscosity 

rl = pcI(P 

we obtain 

WC2 T -=--_ 
P TO 

Here cp stands for some number depending on 
the nature of averagings. 

Assume that g is squared sound velocity, then 

c2 T 

v=F. 0 
Since at normal conditions the latter ratio is 
very small, in this case the transition of visible 
motion into heat will be unnoticeable. 

Nevertheless, motion of the matter of con- 
tinuum may be of three kinds: 

(1) mean observable motion; 
(2) disturbed relative, escaping observation 

motion ; 
(3) thermal motion that can be observed. 

In a bounded medium the wall may presum- 
ably intensify largely intermediate motion and 
even make it visible. This assertion is a priori. 
However, Reynolds experiments with traced 
jets confirm it. 

Obviously, under certain conditions due to 
some reason, the energy of mean molar motion 
with infinite periods is directly transformed into 
the energy of relative motion with ftite periods, 
this relative motion being characterized by 
turbulent tortuous motion of the liquid. Relative 
motion is maintained by continuous transition 
from the energy of mean motion, despite simul- 
taneous permanent decrease in the energy of 
relative motion due to transformation into heat 

CO 
Laminar flows, therefore, differ from potential 

inviscid flows in that they are disturbed and 
always include relative irregular flows which 
transform a laminar flow into a thermal one. 
Only excitation of these motions may disturb 
the laminar flow and transform it into turbulent 
mode. 

Thus, according to the above concept the 
solution of the problem on estimation of the 
amount of heat obtained due to transition of 
visible motion into thermal one, fully turns on 
the methods of calculating the change in the 
dissipative function within the path equal to the 
mean wavelength of fluctuations. This calcula- 
tion was first performed by Reynolds who thus 
prompted the way of solving heat transfer 
problems. 



HEAT TRANSFER IN A SUPERSONIC FLOW 2131 

2. THE REYNOLDS RE!SOLUTION EQUATION 

IfE denotes the total energy of the medium, E 
is the energy of mean molar motion, then under 
the developed flow conditions the energy of 
relative motion E’ is determined by the formula 

E’=E-E. 

Following Reynolds we expand the absolute 
velocity components into mean molar and 
fluctuational velocities 

Wl 
= ii, + 24; w2 = ii, -I- 24; wj = ii, + 24;. 

Subscripts 1, 2, 3 show coordinate axes. Com- 
ponents of fluctuational velocity satisfy con- 
tinuity equation 

divj=$+.dx !%+ % - 0 
2 8x3 * 

(2.1) 
1 

Assume that the axis x1 is directed along the 
velocity of the mean molar flow. Then 

w1 =ii+u;; w2=u;; ws=uj. 

In this case the net force of the absolute motion 
may be expressed as 

E=E+E’+piiu;=E+E’+& 

The addition of energy r determines transition 
of visible motion into heat, and the rate of its 
time change may be presented as 

2 = (z, grad c). 

It may be shown that one portion of the rate of 
energy change < is used to overcome the inertia 
forces, the other is transformed into heat. The 
latter may be expressed by the following 
mathematical expression 

dr, afi as 
dt = Pu;2 ax, + Pu;u; ax, 

(2.2) 

Reynolds considers the case when the velocity 
P slightly changes along the stream line and the 

flow possesses axial symmetry. In this case the 
component u; may be neglected, and equation 
(2.2) takes the form 

d5 aii 
- = pu;u;ax. 
dt 

2 

By including solutions of equation (2.1) into this 
equality and transforming the Rayleigh dissipa- 
tive function based on the same solutions, and 
comparing the results, Reynolds has obtained 
his outstanding equality which allows estima- 
tion of transition of visible motion into heat. 
This equality may serve as a basis of the theory 
of heat transfer of bodies interacting with a 
hydrodynamic flow. 

Then Reynolds aflirms that, in a wall region, 
integrals of unsteady differential equations for 
viscous fluid cannot exist under any conditions, 
since they are not consistent with the medium 
at the intial moment. This statement is grounded 
by Reynolds’ paper [2]. Therefore, for the wall 
region the viscous fluid equations should have 
the form 

gradp = qA,u. 

Reynolds seeks for a peculiar solution for this 
differential equation, and expresses it in terms 
of the mean velocity over the thickness of the 
region, i.e. in terms of u,,, which is equal to 

6 

1 
u, = - 

8 
I 

u dx,. 

By ‘including these solutions into his basic 
equality which governs the transition of visible 
motion into a thermal one, Reynolds reduces it 
to the form 

l&j 2d3 9 

% =3qjz. (2.3) 

This is the final form of the Reynolds resolution 
equation, 

After introduction of the following notation 
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equation (2.3) takes the form 

$Re,= 0 z 1* + 2 x 5.53 1’ + 50 (2.4) 

2 O-95 1 
or 

0247 Re _ I4 + 1146 l2 + 50 
6- I * 

(2.5) 

Assume the following relationship between 
the numbers Nu, Re and period of spatial 
fluctuation 

Nu, =./Wet) cp(@) = f(ReJ II/ f . 0 
With account for 

Re, = Re 2 
dl!A’ 

obtain 

Now we make use of the Reynolds resolution 
equation (2.5). It may be approximated by the 
power-law function, i.e. it may be assumed that 

Re, = B”F’. 

Substitution of this relationship into the latter 
equality gives 

After separation of the function depending only 
on Re, from this expression, we shall have 

NUL 

The way the heat-transfer phenomena pro- 
ceed makes such a transition possible. In almost 
all of the cases the experiments allow the number 
Nu to be expressed in the form of the power-law 
function of Re,. the factor and power exponent 
constant. Therefore the function 

may also be assumed constant. The numerical 
value of this function may be found from the 
analysis of the phenomena at an) convenient 
point. The stagnation point of the incident flow 
may be the case. 

3. HEAT FLUX FROM A SUPERSONIC GAS 
FLOW TO A SOLID 

Unlike a subsonic flow, a supersonic one 
around a solid is divided into three regions. The 
first region corresponds to the state of fluid from 
theinfinitedistance to theshock wave: thesecond, 
to the state of fluid from the shock wave to the 
surface around the solid in the flow with dis- 
continuous change of the density, and at last 
the third one corresponds to the hydrodynamic 
state of the fluid between this surface and that 
of the solid body. The picture quite agrees with 
observations. We think the transition occurs in 
the third region. This does not contradict the 
generally accepted point of view. 

The third region is acknowledged by all 
investigators and up to now is identified with the 
Prandtl-I&m&r boundary layer. As the 
majority of investigators think, this region, as 
well as in a subsonic flow, is divided into laminar 
and turbulent ones, as far as the ilow pattern is 
considered. 

We do not hold to the view of the majority. 
Consider the region of transition of visible 

motion into heat for a supersonic flow around 
solids to be bounded from one side with the 
solid surface, and from the other, with the surface 
not far from that of the solid body where the 
velocity undergoes discontinuous change. Then 
assume that all the values which determine I he 
state of the medium in the region of transition of 
visible motion into heat. depend on the co- 
ordinates and time only through the variable 
< = V+ gt. Thus we ascertain that transiti of 
visible motion into heat proceeds in the f01 m of 
a front. It may be stated a priori that $uch a 
process is possible, but this means that it is 3ure 
to exist. This alternative may be theoretically 
resolved only by way of experiments and we shall 
appeal it to. 



HEAT TRANSFER IN A SUPERSONIC FLOW 2133 

Earlier the formula 
dl- 

srcp = PC&, - u) - k;i;; 

was established. The right-hand part of the 
equation is evidently that energy heat flux which 
is absorbed by the solid body. 

This heat flux is known to be determined in 
terms of the heat-transfer coefficient as 

a(T = TO). 

With regard for the above, have 

a(T- TO) = gr.@. (3.1) 

The product gr is related to the conditions of 
flow behaviour and does not depend on tem- 
perature. Differentiation of the relationship (3.1) 
with respect to temperature yields 

d@ 

a=g=dT. 
(3.2) 

Thus, a simple relationship is established be- 
tween the heat-transfer coefficient and the 
Rayleigb function. This is very significant since 
Reynolds has developed a method of calculating 
the energy of transition of visible motion into 
heat using the Rayleigh function. Now we shall 
try to make use of the method. g, is the phase 
velocity of fluctuations, i. is the wave-length of 
fluctuations. Then we have 

I. = g,r. 

But Reynolds expressed his resolution equation 
through the variable 1 

I 206 46 =-=- 
x 1’ 

Account should be taken of the fact that the 
spatial period w is equal to 2x/L. From com- 
parison of the relationships given it follows that 

46 
- = g”T:T = 3. 
1 

Y 

Using the latter relationship we exclude the 
period T from formula (3.2) and arrive at 

4gS d@ 

*=jJ;ri;* (3.4) 

The value 6 is the measure of the thickness of the 
zone where visible motion is transformed into 
heat. Introduction of the time of zone formation 
T makes evident the identity 

s/g = T’. 

Exclusion of the value 6 from formula (3.4) 
yields 

4g’z’ d@ 

a = s.r’@’ 
(3.5) 

Express this relationship in terms of the numbers 
Nu and Re. 

The line obtained when the solid body is 
sectioned by a plane through the abscissa is 
assumed to be the measure of the length. The 
point of flow incidence is considered to be a 
reference point of the line and its end is the point 
where the local heat-transfer coefficient is sought. 
Besides, we use the known Maxwell relationship 

k = fig. 

The mean value of the shear flow velocity in the 
region of transition of visible motion into heat 
is P& 

Now we shah divide equality (3.5) by the 
Maxwell relationship and multiply it by the 
line length L. We arrive at 

Nu, = f : Re, WL - 
rt 

Nu, = Re,. 
4g2 d@ r’ 

f~'dT'c,p' 

But the product r . d@ is modification of the heat 
amount due to transition of visible motion into 
heat. The product cpdT expresses the same. 
Their ratio should therefore, be considered 
equal to unity. This condition allows the last 
formula to be written as follows 

Nu,, = Re, - . 
f&y1 

(3.6) 
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Now it is of, the form which allows its trans- 
formation using the Reynolds resolution 
equation. 

The Reynolds resolution equation is of the 
form 

O-247 Re, = 
l4 + 11*0612 + 50 

I . 
(3.7) 

Within any range of two variables Re, and 1, may 
be approximated by the power-law formula that 

Re, = B’” F, 

where B”’ is a constant. Also, the identity 

Re, = Re,; 

holds. With regard for these two relationships 
formula (3.6) may be written as follows 

or 

Nu, = /j RE’“- 1)/m L 

4~~2 L (i/m) 

0 1 A=fz s . 
(3.8) 

The way of calculation of the constants m and 
A would be the way of theoretical solution of 
heat-transfer problems. It appears possible to 
find it in many particular cases. 

If formulae (3.7) hold for any points of surface, 
they will also hold at the point of flow incidence. 
Thus, in the cases of clear physical picture at the 
point of flow incidence, the possibility of 
calculating heat losses for any point of the heat 
transfer surface arises simultaneously. 

The stagnation point of the incident flow 
cannot be considered a mathematical one. 
Therefore, at this point, the length L has some 
limit value L,. The thickness of the region of 
transition of visible motion into heat also has 
some limited value 6,. 

As to the three values g, 8, and W,, the follow- 
ing considerations may be presented. At the 

stagnation point the front velocity and the phase 
velocity of fluctuations coi.ncide and are equal 
to the speed of sound. ‘Thus we aflirm that both 
phenomena are due to the same reason, i.e. 
fluid compression. 

Transition of visible motion into heat at the 
stagnation point of the incident supersonic flow 
should occur at the Mach number equal to unity, 
if the flow velocity is related to the sound speed 
of the fluid which thermodynamic state corres- 
ponds to its state at the stagnation point. This 
means that all three values are equal. 

AU this allows the formula for heat transfer in 
a supersonic.flow to be written in the form 

4B L, ilrn 
Nu, = - 

0 
. Re’m- IUrn 

f ‘6, L ’ 
(3.9) 

The Reynolds resolution equation (3.7) also 
allows calculation of the ratio- L&I, for the 
process at the stagnation point of the incident 
flow. 

At the stagnation point the value I should 
have the minimum value which can be neglected 
as compared to figure 50. Then we shall have 

0.247 Reso = 7. (3.10) 

When defining Re and taking account of 

/ = .4! 

0 

we have 

0.247 . pW,6, 50 I, 
=-.--. 

‘I 4 60 

But viscosity is described by the relationship 

r/ = $pcs. 

where c is thermal velocity, s is free path length. 
Now the Reynolds resolution equation may 

be written as 
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Or, when substituting the thermal velocity by 
the speed of sound 

O-741& 0 =_*o* 25 L 

J3 s 2 6, 

Hence it follows 

sg_ 25 3 

S&l -izEx J(> v - 
(3.11) 

One molecule, on the average, occupies the 
volume 

4 Jrs3 xs3 -V-V* 
38 6 

(3.12) 

The layer with transformation of visible 
energy into heat is of thickness 6,. Hence, the 
minimum volume of this layer including one 
molecule will be ~5,s~. This volume should be 
equivalent to the half volume per one molecule 
in free space. Thus. 

6,s2 = ; s2* 

Using this relationship the free path length can 
easily be excluded from formula (3.12) 

,_25xQx 6 3 
10 1.482~ J(> r . 

In order to calculate the unknown ratio, the 
relationship between the minimum value of L, 
and the wavelength should be known. 

If the maximum value of the fluctuation 
amplitude coincides with the geometric point 
of the stagnation region, then, obviously, the 
minimum value of the magnitude Lshould be 
equal to one fourth of the wavelength. This 
condition allows final expression for the ratio 
Lo/&, in the form 

A _ 71 x 0.0148 L 

6, - 12 
&) = Oa389\/(;). 

With polyatomic gases, for which 7 may be 
assumed equal to 1.44, we shall have 

L 
0 = 0.0027. 
4 

Thus for polyatomic gases heat-transfer 
formula (3.9) may be rewritten as 

Nu, = c 4B(~O027)1/m~~~-lVm= ERc(m-lVm. 
J 

The proposed method 
heat transfer coefficient 

(3.13) 

of calculation of the 
using the Reynolds 

resolution equation would be rather complete if 
the constants m and B might be calculated by 
the main experimental data. Such a calculation 
appears to be possible. This will be done when 
considering particular examples. 

4. SOME EXAMPLES OF C ALCULATING HEAT 
TRAh’SFER OF SOLIDS IN A GAS-DYNAMIC 

FLOW 

To solve any heat-transfer problem for a gas- 
dynamic flow the approximation region of the 
power-law function of the Reynolds resolution 
equation should be defined. In other words, the 
values of m and B should be estimated by the 
main parameters for any particular case. 

The Mach number and thermodynamic state 
of fluid in the premix chamber of a gas-dynamic 
nozzle may be assumed to he the main parameters 
of the gasdynamic flow. Also, the nature of the 
fluid should be taken into account. 

We shall write the Mach number for the 
stagnation point. It is this number that charac- 
terizes the gasdynamic flow. The sound speed 
of the fluid at the initial state is g,. Then 

iu 
W 

=-. 
8, 

By multiplying the nominator and denominator 
by the time of formation of the region of transition 
of visible motion into heat obtain 

M 
Wd 

=- 
SJ’ * 

Since for the stagnation point 

w- P?+g, 
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the latter identity may be rewritten as 

M 
s 

=- 
gst . 

Now we shall multiply the nominator and 
denominator of the identity by the fluctuation 
wavelength and obtain 

M - g*rf; 
-0. 

s 0 

According to Reynolds, the ratio 4s,/a, is equal 
to the limit number. Therefore 

4M=I,I, 

9,r’ * 

Substitute in this expression the sound speed by 
thermal velocity using formula 

where C~ is the thermal velocity of a molecule 
at the initial state. Then for the Mach number 
obtain 

4M = (4.1) 

It is seen from the relationship that in order to 
estimate the lower boundary of the value 1 
variation, the ratio 

should be known. This ratio can be estimated 
when Reynolds’ ideas are successively used. 

According to Reynolds, thermal motion of 
molecules is relative as compared to the macro- 
scopic motion of medium. The fluctuational 
motion which through the macroscopic motion 
of medium is transformed into heat is, in its 
turn, relative to the mean macroscopic motion. 
This statement gives us a right to consider that 
the mean kinetic energy of the molecules of a 
medium at the final state is equal to the sum of 
the kinetic energy of molecules at the initial 

state of the medium and the kinetic energy of the 
fluctuational motion transformed into heat. 
Mathematically this can be written as 

P& f &u2 = PC2. 

Denoting the final to initial density ratio by /?, 
obtain 

c; + u2 = fit”. (4.2) 

This expression is equivalent to the vector 
equality 

c.q + u = (JP)c. 

Thus, any translational thermal motion of 
molecules transits into another translational 
motion along the vector c due to fluctuations. 

Multiply equation (4.2) by the squared time 
of formation of the region of visible motion 
transition into heat at the stagnation point 

(c&)2 + (UZ’)2 = /3(ct’)2. 

Substitution of c by the sound speed g yields 

UC) 1 ; gr’ 
2 

(c,r’)2 + (ur’)2 = fi 38 = ) s;. (4.3) 

For the time of formation of the transition zone a 
fluctuating particle should cover the distance 
equal to the wavelength and return to the initial 
state. Under this condition only, fluctuational 
motion is reasonable to be considered relative 
with respect to the mean motion which is 
relative to the thermal one. This means that the 
product ur’ is equal to the double fluctuation 
wavelength, i.e. 

ur’ = 21i,. 

At this condition equality (4.3) may be written as 

( CMT 1 2 38 6; 38 
,,x 

+4=--2=-l*. 
0 16jj 

Hence follows 

16jj 

= (3/912 - 64jj)’ 
(4.4) 

When squared and including the expression 
obtained, equality (4.1) takes the form 
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Then 

I= 8 ; J(B J(> uy - 1)’ (4.5) 

Thus, the formula derived allows estimation of 
the lower boundary of the Reynolds variable 
using main parameters M, /3 and 7. 

At the Power Engineering Institute 0. N. 
Kastelin and L. N. Bronsky [3] have studied 
heat transfer in a supersonic flow of spherical and 
elliptical bodies. Their experiments may be used 
to verify the above considerations. 

These authors used spherical bodies 1.5 and 
2 cm i.d. Elliptical bodies were of two types. One 
group had a large half-axle of l-5 and 2 cm and 
a smaller half-axle of 075 and 1 cm. The other 
group had a large half-axle of 0.75 and 1 cm and 
a smaller one of O-375 and @5 cm. 

The first group of elliptical bodies was 
arranged with their large half-axle against the 
incident flow. The second group had their 
smaller half-axle against the incident flow. The 
tests have been carried out on a gas-dynamic 
installation of continuous operation at M = 
2*77,240 and 1.88. The temperature behind the 
shock wave was 274,270 and 261°C. 

From the experiments 0. N. Kastelin and 
L. N. Bronsky have found the relationship for 
all of the above bodies 

Nu, = 0.8;“. 

Here the numbers N~(L and Re, were defined in 
the same way as in the previous section. The 
factor in the Reynolds number was estimated 
as the mean of some observations. It ranged from 
0.7 to 0.9. 

If the Mach numbers presented by Kastelin 
and Bronsky are used, then in accordance with 
(4.5) we may tabulate the lowest values of the 
variable I in the Reynolds resolution equation. 
For the table calculations the gas was assumed 
polyatomic, and, therefore, y equal to 144 and 
/3 equal to unity. 

M 1 

2.77 
2-40 ::Yi 
1.88 65.5 

The table shows that the minimum value of 
the variable is about 6. The value of I increases 
with the distance from the stagnation point 

FIG. 1. Graphic presentation of Reynolds resolution 
quation. 

(Fig. 1). Approximation of the resolution equa- 
tion in this region by the power-law function 
yields 

Re, = 4212. 

The general form of the approximating function 
iq 

Re = B’T. 

Comparison of these two formulae gives the 
following values of B and m 

m= 2; B2=42; B = 650. 
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The data obtained allow formula (3.13) to be 
written for the given case as 

Nu = 
4 x 650 

f 
m27*. Re0’5. (4.6) 

From the theoretical predictions by Eucken for 
polyatomic gases, the Maxwell factor is 1.8. 
&dstitution of this value for f in 
yields 

formula (4.6) 

Nu = 0.75 Re”‘s (4.7) 

Thus, the theoretical formula for heat transfer 
of solid s in a gas-dynamic flow is fully confirmed 
by experimental data. 

The question arises how far it may be extra- 
polated with increasing Mach numbers. 

For very large Mach numbers formula (4.5) 
can approximately be written as 

Y 

1=8 3’ J( > 
But for the density ratio p according to the 
Clapeyron equation the expression 

p p”,+ =- 
0 

is valid. 
In accordance with (4.2) pressures should be 

assumed equal Then we have 

Let the temperature corresponding to the initial 
state of the substance be equal to 300°K and 
that to the final state, to 9OOOK. Then 

/&300=~. 
9000 30 

If for polyatomic gas Jo = 144, then in the 
resolution equation 

I = 8 x 1.2 x ($0) = 9.6 x 3.16 = 30.4. 

With these values of 1 the resolution equation is 

Re _ l3 + 11.061 
a- 0.247 ’ 

For the range of 1 from 30 to 40 the above 
quality may be approximated by the formula 

Re, = 135 1’. 

Hence we have 

m= 2 B = (4135) = 11.6. 

The heat-transfer formula, therefore, will be of 
the form 

Nu _ 4 x 11.6 x @05 
L- 1.8 

Re:” = 1.35 Re0’5 . 

It is seen from the formula that at A4 corres- 
ponding to stagnation temperature of 9000°K 
the heat-transfer coefficient increases by about 
two times as compared to the experimental data 
of 0. N. Kastelin and L. N. Bronsky. 

0. N. Kastelin and L. N. Bronksy have also 
investigated the heat transfer of a plate normal 
to the incoming flow direction. They have 
obtained the formula 

% = 031 Re0’5g 
L (4.8) 

It may be shown, however, that the latter 
formula corresponds to the one obtained earlier. 

In fact, assume that in the Reynolds resolution 
equation the lower boundary of the variable 1 in 
the earlier experiments corresponds to that in 
the latest experiments. Then the difference 
between formulae (4.8) and (4.7) should be 
explained only by the method of approximation. 

When deriving formula (4.7) the Reynolds 
resolution equation was approximated by the 
power-law function 

B”‘P = 42 1’; m = 2; B = (,/42) = 6.5. 

The same formula may also be approximated 
by the power-law function of the form 

j32.5 12.5 = 42 12. 3 m = 2-5. 

In this case the ratio (m - 1)/m will be equal to 
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O-6, which almost corresponds to the power As we see., the formula is found which is similar 
exponent of the second formula by 0. N. to (4.7). Therefore, there are no reasons to think 
Kastelin and L. N. Bronsky. We have to cal- that heat transfer in the latest experiments of 
culate only the constant B,. Assume, as before, 0. N. Kastelin and L. N. Bronsky differs from 
that the lower boundary of the value 1 is 6. Then that in their earlier experiments. 
we shall have 

B2.5 42 
=F = 17-l. 

Hence REFERENCES 

B, = 3.11. 1. 0. moms, Dynamic theory of motion of incompres- 
sible Viscous fluid and criterion determination, Problem,r 

Now the heat-transfer formula may be presented of Turbulence. Izd. NKTP SSSR (1936). 

in the form 2. 0. REYNOLDS, On the quations of motion and the 
boundary conditions for viscous fluids, Scientific Papa 

4 x 3.11 x o-052 1, 132 (1901). 
Nu, = 

1.8 
ReF6 = O-361 Re0’6. 3. L. N. BRONSKY, Thesis, Power Engineering Institute, 

USSR Academy of Sciences (1960). 

TRANSFERT DE CHALEUR DANS UN ECOULEMENT SUPERSONIQUE 

R4srmC-On suppose actuellement qu’il existe une surface particuliire qui d&mite une region visqueuse 
autour d’un corps dans un Coulement supersonique. Cette region est identifite a une couche laminaire ou 
turbulente de Prandtl, le processus de transition du mouvement visible vers la cbaleur &ant d&tit par les 
mtthodes developpees par Prandtl et Karman pour des icoulements subsoniques. 

Dans la prisente etude, on a utilis4 une autre approche bas& sur les id&es d’osborne Reynolds et cette 
equation de resolution portant son nom 06 est fix& la transition dun mouvement thermique a un autre 
mouvement pulsatoire qui, a son tour, &ablit une relation entre les nombres de Nusselt et Reynolds. 
C’est une relation en loi de puissance dans 1aqueIle les coefftcients et les exposants de puissance peuvent 

&re pricalcults a pa& de considerations simples, comme cela est month dam cet article. 

WARMEUBERGANG IN OBERSCHALLSTROMUNGEN 

tiammanfaagenwiirtig wird allgemein an nommen, dass eine besondere Oberflliche existiert, 
die eine ZHbigkeitszone urn einen K&per in einer %e rschallstromung begrenzt Diese ZHhigkeitsxone 
wird als laminare oder turbulente Prandtl’sche Grenxschicht identiflxiert, wobei der Ubergangsprozess 
xwischen Bewegung und Wirme durch das Verfahren beschrieben wird, das Prandtl und Karmin ftir 
UnterschallstrGmungen entwickelt haben. 

In der vorliegenden A&it wird eine andere Niiherung benutrt. lhr liegen die Ideen von Osborne 
Reynolds und die sogennante Liisungsgleichung xu Grunde, in der ein bestimmter Ubergang xwischen 
LBngsbewegung und Pulsiermder Bewegung festgelegt ist. Daraus ergibt sich tin Zusammenhang xwischen 
Nusselt-Zahl und Reynolds-Zahl und xwar in Form eines Potenzgesetxes, in dem die Koeffienten und 
Exponenten aufgrund einfacher Uberlegungen vorausberechnet werden k&men. Dies wurde in der 

vorliegenden Arbeit durchgefilhrt. 
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(1 TEKIOOB.MEHE B CBEPS3BYKOBOM CIOTOKE 

.bm~aqua-B HaCTORQee BpeMR O6U&eIIpbfHtITO Ilpe~llOJIOifCWDie U CyUeCTBOBaHHIl OCOiJOit 

IIOBepXHOCTIl, 0rpaHmnBaro~eti 06nacTb 3~3~0ro Te9eHm o~ono Teaa, oATeKaenor0 
CBepX3ByKOBbIM IIOTOKOM. 3Ty 06naCTb OTOH(QeCTB.iTRIOT C JIaMMHapHbIM 11.x1 Ty[16yJeHTHbIM 
CxOeM I-Ipaa~TnH If npoqecc npeapauestrcr BHJUlMOrO ;IBWKeHHR B Term0 OllRCbiBaIOT TeNI 
npMeMami,KoTopxde pa3pa60TaHu rIpaHi(TaeM If KapxaHoM ~n~;loaBy~o3bIxTesennr~. 

B HaCTOHuefi pa6OTe IICrIOJIb3yeTCT1 ;rpyrOti npaeu, OCHOBaHHbIft Ha 5IHeRX OCliOpHa 
PetiHonbqca n ero TaK tla3IdBaexoM paapemaio~ehi ypamiemrti, B KoTopoM +rrKcrrpyeTcR 
nepeXOR TelIJlOBbIX RBW-KeHIIfi B llyJIbCaUMOHHble, qT0 3 CBOH) orepezb ZaeT cm36 5fe-*zy 
KpHT0pMHMH HyCCexbTa Ii PefiHOJfbfiCa. CBFI3b DTB IfMeeT CTeIieHHOfi BIl;[,npIFIeM BXOAHmlle 
B Hee KO3@#lHIIHeIiT 11 IIOIiaaaTenb CTeIIeHH NO?KHO IIpe~BbIWCJIMTb HCXOSR 113 ;[OBOJIbHO 

npocTbIx coobpameHn~,~TO 11 npogenaao B ;[BHHOti pa6oTe. 


